Background

The Extensible Markup Language (XML) is a W3C-recommended general-purpose markup language for creating special-purpose markup languages, capable of describing many different kinds of data. It is a simplified subset of Standard Generalized Markup Language (SGML). Its primary purpose is to facilitate the sharing of data across different systems, particularly systems connected via the Internet. Languages based on XML (for example, Geography Markup Language (GML), RDF/XML, RSS, MathML, Physical Markup Language (PML), XHTML, SVG, MusicXML and cXML) are defined in a formal way, allowing programs to modify and validate documents in these languages without prior knowledge of their form. [9]
There are 2 main schema used to validate the XML documents, DTD and XML schema. Here we will make an introduction to them and compare them. Document Type Definition (DTD), defined slightly differently within the XML and SGML specifications, is one of several SGML and XML schema languages, and is also the term used to describe a document or portion thereof that is authored in the DTD language. A DTD is primarily used for the expression of a schema via a set of declarations that conform to a particular markup syntax and that describe a class, or type, of SGML or XML documents, in terms of constraints on the structure of those documents. A DTD may also declare constructs that are not always required to establish document structure, but that may affect the interpretation of some documents.

In a DTD, the structure of a class of documents is described via element and attribute-list declarations. Element declarations name the allowable set of elements within the document, and specify whether and how declared elements and runs of character data may be contained within each element. Attribute-list declarations name the allowable set of attributes for each declared element, including the type of each attribute value, if not an explicit set of valid value(s). [1]
DTD is much simpler to be implemented than other schemas. But the Document Type Definition (DTD) language, which is native to the XML specification, is a schema language that is of relatively limited capability.
Here is a simple DTD example:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT TheBodyShop (Customer, Product)>
<!ELEMENT Customer (id, name, address+, phone)>
<!ELEMENT Product (id, name, description)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (street, state, city, country)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT country (#PCDATA)>
<!ELEMENT description (#PCDATA)>

Data types are not specified in DTD, in this case, users can enter what values they like, even some funny data. Like the element phone, users can enter a string value as long as it is parsed value, but in reality, phone number is a number value. Also the DTD format is so flat that it is difficult to know which one is root and which element is sub-element when users view it at the first time, since it is not a sharked format. As an old schema, DTD is less defined for the attributes.

As the XML message becomes more and more popular, the requirements for validating XML documents have to be improved as well. Another very popular, more expressive XML schema language, XML Schema came out at this stage. An XML schema is a description of a type of XML document, typically expressed in terms of constraints on the structure and content of documents of that type, above and beyond the basic syntax constraints imposed by XML itself. An XML schema provides a view of the document type at a relatively high level of abstraction.

Like all XML schema languages, XML Schema can be used to express a schema: a set of rules to which an XML document must conform in order to be considered 'valid' according to that schema. However, unlike most other schema languages, XML Schema was also designed with the intent of validation resulting in a collection of information adhering to specific datatypes, which can be useful in the development of XML document processing software, but which has also provoked criticism. [2]
XML Schema defines the rules more specified than DTD. It not only contains elements, but also attributes and data types. In this way, XML documents are defined much more specified, which makes the validation more advanced. Also it is written in a shaped format so that users can specify the root, elements and attributes in their first opinion. XML Schema is such a powerful validating language that it is more or less complicated to implement.

Here is a simple XML schema example:
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema">

<xs:element name = "DeliveryReceipt">

<xs:complexType>

<xs:sequence>

<xs:element name = "Customer">

<xs:complexType>

<xs:sequence>

<xs:element

 ref = "Name" />

<xs:element

ref = "Address" />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name = "Items">

<xs:complexType>

<xs:sequence>

<xs:element

ref = "DeliveryItem"

 minOccurs = "1"

maxOccurs = "unbounded"/>

</xs:sequence>

</xs:complexType>

 </xs:element>

</xs:sequence>

<xs:attribute name = "deliveryID"

type = "xs:integer" />

<xs:attribute name = "dateReceived"

type = "xs:date" />

</xs:complexType>
</xs:element>

<xs:element name = "Name">

<xs:complexType>

<xs:sequence>

<xs:element name = "FirstName"

 type = "xs:string" />

<xs:element name = "MiddleInitial"

 type = "xs:string"

 minOccurs = "0"

 maxOccurs = "1" />

<xs:element name = "LastName"

 type = "xs:string" />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name = "Address">

<xs:complexType>

<xs:sequence>

<xs:element name = "AddressLine1"

 type = "xs:string" />

<xs:element name = "AddressLine2"

 type = "xs:string"

 minOccurs = "0"

 maxOccurs = "1" />

<xs:element name = "Town"

 type = "xs:string" />

<xs:element name = "City"

 type = "xs:string"

 minOccurs = "0"
 maxOccurs = "1" />

<xs:element name = "StateProvinceCounty"

 type = "xs:string" />

<xs:element name = "ZipPostCode"
 type = "xs:string" />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name = "DeliveryItem">

<xs:complexType>

<xs:sequence>

 <xs:element name = "Description"

 type = "xs:string" />

 </xs:sequence>

 <xs:attribute name = "quantity"

type = "xs:integer" />

</xs:complexType>

</xs:element>
</xs:schema>

For this example, users just can enter an integer value for the element “quantity”, as it is defined to be an integer type. Therefore, any funny value will not appear here.

Citation:
[1] http://en.wikipedia.org/wiki/XML_schema
[2] http://en.wikipedia.org/wiki/Document_Type_Definition
[3] Documentation form Barry Dowdeswell (AARN Innovation Limited)
AARN Mapping tools research.doc
[4] Documentation form Barry Dowdeswell (AARN Innovation Limited)

Structure of Data Type Definitions for XML messages.doc
[5] Documentation form Barry Dowdeswell (AARN Innovation Limited)

autoack.b2be.dtd
[6] Documentation form Barry Dowdeswell (AARN Innovation Limited)

DEC_B2B_AUTOACK.XML
[7] Documentation form Barry Dowdeswell (AARN Innovation Limited)

Schema_PO_v1.40.xml
[8] Documentation form Barry Dowdeswell (AARN Innovation Limited)

Foodstuffs_Purchase_Order.xml
[9] http://en.wikipedia.org/wiki/XML
